PHYSICAL REVIEW E VOLUME 55, NUMBER 2 FEBRUARY 1997

Locally self-similar, finite-time collapse in a high-symmetry vortex filament model
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A locally self-similar solution is found using a vortex filament model. The solution is steady in a rescaled
frame with magnification t(,—t) ~*/? about the origin. A finite-time singularity results in which velocity,
vorticity, and enstrophy scale ag;;—t to powers—1/2, —1, and—1/2, respectively. The initial flow is six
closed vortex contours symmetric around and propagating toward the origin. The self-similar inner solution
consists of three orthogonal filament quadrupoles centered about the origin. The solution is attracting within a
space of symmetries preserved by the incompressible Navier-Stokes and Euler equations. The numerical
method consists of piecewise straight vortex segments with a standard variable core regularization model.
Small core deformation is modeled with a two-length scale core function. This solution is similar to the
candidate singular flow suggested by Boratav and Pehys. Fluids6, 2757 (1994)] in their large-scale
pseudospectral simulations. The steady inner solution has a set of hyperbolic critical points around which
singular focusing occurs. It is conjectured that the singularity is pointwise in time as well as in space, and a
smooth expanding solution exists which is symmetric with the collapsing solution about the critical time.
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[. INTRODUCTION but intersect it at the ends. The topology of the tubes is rather
simple. The radius of curvature of the tubes appears to be

The assumption that smooth solutions to the equations dfirge compared to the core thickness. The isosurface of vor-
a three-dimensional incompressible flow exist for all timelicity actually appears more cylindrical at later times, sug-
has not been proven. If a smooth initial flow were found thatdesting that core deformation is slight. For these reasons, we
develops a singularity in finite time, the validity of the equa-Pelieve that this flow can be modeled with a filament
tions of ideal hydrodynamics would have to be reassessediethod. . _
Such a flow, if stable, may also have applications such as e show in this paper that there exists a steady collapsing
focusing or rapid mixing. Many investigations, both analytic Solution to a vortex filament model of the vortex dodecapole
and numerical, have established bounds, conditions and pogtown in Fig. 1. The steady solution is in a frame rescaled
sible candidate flows for a finite-time singularigTS), but ~ about the origin such that the magnification fs{—t) ="
none has shown its existence definitively. Since the spatial scale goes to zero in _flnlte time, the !nduced

Numerical solutions of Kerf2] and Boratav and Pe[g]  Velocity scales as the ma_gnlflcatlon. Since th_e core size goes
present strong evidence of a FTS. Figure 1, from simulationf Z€ro, constant circulation causes the vorticity to scale as
in the latter reference, shows isosurfaces of vorticity magni{tcit—t) ~*. The same inner solution was found for different
tude(a) at an early time and low magnitude, afis) at a late |n|t|al_ positions an_d core Fhlcknesses. Th_us a finite-time sin-
time and higher magnitude. The flow structure is termed @ularity is found in the filament model in the form of an
vortex dodecapole. The former isosurface is on the scale dittracting, locally self-similar collapsing solution. _
the domain, and the latter on the scale of the grid size. The In a series of papers, Siggia and Pumir presented evidence
flow is highly symmetric, using all the symmetries of the Of & FTS in which two vortex filaments align in an antipar-
These simulations use a pseudospectral method with effec-
tive resolution of 1022 modes; one decade ofgf—t) 1
scaling in vorticity is found.

It is evident from this example that, with large-scale simu-
lation, singular flows can only be suggested. The role of such
simulations is to motivate possible analyses or simpler mod-
els which bring us closer to the establishment of a FTS.

In the present paper, a vortex filament method is used to
model the collapsing vortex structure observed by Boratav
and PelZ 3]. With a simpler model, higher resolution and a
better understanding of the solutions can be achieved. In Fig
1, the vortex lines are approximately tangent to the surface,

FIG. 1. Isosurfaces of vorticity magnitude from large-scale
*FAX: 908-445-3653, -5313. Electronic address: simulations:(a) at t=1.5 and|w|=10, and(b) at t=2.125 and
pelz@jove.rutgers.edu |w|=100.
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strain rate they exert on the inside quadrupole also increases.
This flow may exhibit the necessary feedback mechanism
between vorticity and axial strain rate.

The organization of the paper is as follows. In Sec. Il we
present the vortex filament model with piecewise linear seg-
ments and variable core function. We then describe, in Sec.
Ill, the dynamic rescaling technique employed in the La-
grangian frame. In Sec. IV we briefly describe how the initial
condition for the filaments was constructed. The results of
the computations are presented in Sec. V. A modification of
the filament model which takes into account local core de-
formation is then discussed in Sec. VI. The solution after the
critical time is discussed in Sec. VII, and concluding remarks
are made in Sec. VIII.

II. VORTEX FILAMENT MODEL

To construct a vortex filament model of the dodecapole
shown in Fig. 1, we make the following assumptions and
restrictions.

FIG. 2. The straight-line filament dodecapole. (i) Each of the vortex tubes seen in Fig. 1 can be replaced
by single vortex filament. It is observed that the cores remain

of radius of curvature to core size approached unity, makmgc,eparate and do not intgract significantly, the core thickness
the filament approximation an invalid model of the Euler'S On the order of the d|s_tance to the clogest bilateral sym-
equationg4,5]. Later, they showed, with a locally conserva- Metry plane, and the radius of curvature is greater than the
tive core model, that the ratio does remain greater than 1, bore th_lckness. An isolated _and concentrated vorticity distri-
the cores overlap significant[]. Waele and Aart§7] also bution is necessary for the filament model to approximate the
studied the antiparallel collapse problem with a filamentEuler equations. o
model. They showed evidence of a FTS up to the point when (i) Bilateral symmetry on all the “0” planes, which is
the cores overlapped. Finally, Pumir and Siggia showed thaereserved by the Navu?r—Sto_ke_s equations, is used. From this
core deformation in a Eulerian simulatiéwhich would oc- ~ Symmetry, the streamlines lie in the “0” planes and on the
cur at the time of filament core overlapaused a saturation @Xes.- The axes are vorticity nulls, and only normal vorticity
of the axial strain rate which allowed only an exponential™ay be nonzero on the planes. The tangential vorticity near
blow-up[8]. This finding was substantiated by simulations of the plane has an equal and opposite image vorticity across
Shelley, Meiron, and Orszd@]. In the simulations of Kerr the plane. . o

[2], singular behavior was observed for the antiparallel col- (i) ~ The  permutation ~symmetry —on vorticity,
lapse problem if the initial flow was carefully filtered. wy(X,y,2) = 0y(Z,X,y) = 0,y,2,X), which is also preserved

The filament solution presented in this paper does noPY the equations of motion, is used. This symmetry is impor-
involve an antiparallel collapse. The solution does involvet@nt because it allows a coupling between the vorticity of a
six vortex dipoles, but their position from the origin, separa-tube and the externally applied axial strain rate. It was not
tion distance and core radius all scale ri:m—t- At the usedinthe hlgh-symmetry_Taqur-Green vortex S|mulaf[|ons
critical time, all 12 vortices have converged to the origin,©f Brachet etal. [10], which yielded only exponential
and the core radius there has shrunk to zero. growth. , _

Mild core deformation seen in the field simulations is | he Stability of the solutions to symmetry-breaking per-
modeled in our filament computation by a two-length-scaldurbations will not be addressed here. Our approach is to
desingularization. With this, there is no core overlap of non-92ther evidence for the existence of a FTS in a restricted
local vortex segments. While we find no evidence in the fieldPace first. While we do not speculate on stability, the estab-
or filament simulations of strong strain rates which would!iShment of even an unstable solution trajectory, which ends
cause large core deformation in the field solution, this effect? @ FTS, is important. o
is not accounted for in the filament model. If present in the W€ consider a filament beginning in the plane0 close
field solution, core deformation dynamics could cause a mal® the origin with the vector pointing into the first octant
jor difference between the field and filament solutions. (x,y,z>0). The filament extends orthogonally into the first

Physically, in order for a FTS to occur through vortex Octant, and ends in the plane=0 (again orthogonallyfur-
stretching, the rate of strain along the axis of the vortexNer away from the origin\We shall also consider a filament
should increase with the vorticity. In the vorticity isosurface Which ends in the plang=0.) This fundamental filament is
plot of the dodecapole in Fig. 1 or its filament conceptual-a smooth space curve representes), wheres is the arc
ization, Fig. 2, such a connection can be seen. Each quadriength from 0 at the=0 plane tos* at thex=0 plane. The
pole creates a strain field along the axis of the quadrupolbilateral symmetries create, from the fundamental filament, a
which lies orthogonally inside it. The vortex tubes areclosed contour lying in thgg>0 half-space and an image
stretched and the vorticity is increased. As the two dipolecontour in they<<O half-space. From the permutation sym-
pairs of each quadrupole advect toward the origin, the axiainetry, an image of the fundamental filament, extending from



55 LOCALLY SELF-SIMILAR, FINITE-TIME COLLAPSE ... 1619
thex=0 plane, plus the bilateral images, make up two con4n which the solution is locally steady. In this section, we
tours. Another application of the permutation symmetrypresent such a scaling and apply it to the filament model.
gives two more. Thus six closed filament contours are cre- e define a transformed spatial varialglein which the
ated which are completely determined by the fundamental. minimum interfilament distance is order unity. Since the col-
The fundamental vortex filament curv€s), s=[0,, | lapse of the vortex filament is expected to be isotropic and
is d_iscretized for numerical computation inbd piecevx_/ise about the origin, the transformation &= S(t)x, where the
straight vortex segments connected end to end, ithe  scaling metricS is a function of time only. In keeping with
extending from x,_, to ¥, i=12,...N. X, theinitial condition ofxo(t=0)=1, the scaling metric was
=x(0) xy=X(s, ). The velocity field at poink, induced by ~ chosen to be
a straight vortex filament with end points 1 and 2, is

S(t) 3.0

E0)

) r ( X—X;  X—Xo
Uy oAX)=—— P ——
' 47 X—X |
2 > A
o . S0 as to kee@y(t) i unity.
(X—=X1) X (X—X3) The velocityv in the rescaled plane is easily seen to be

|(X—X1) X (X—Xp)|?’ @D v=u/S, and is also of unit order. In this model, if the fila-
ments collapse to the origin in real tinfiee., 15(ts;) =0],

wherel is the circulation. A core-cutoff function is used to the induced velocity on the filaments at the origin is singular.
avoid the singularity inherent in an infinitesimally thin fila- Velocity derivative terms scale & 2 in the rescaled plane.
ment with nonzero curvature. We use a cubic Gaussian cor& rescaled time variable;, defined through the velocity de-
function for the vorticity distributior{see Knio and Ghoniem rivative scale, igd7= S?dt.
[11], Leonard[12], and Fernandez, Zabusky, and Gryanik The equations of ideal hydrodynamics in a Eulerian frame
[13] for more details A local, volume-conserving expres- are
sion is used to update the core thicknesfr each segment:

o?|X;+1—X;| =const. The velocity at a point on the funda- o . .. ..

mental filament has a contribution from all the other seg- 5 Tu-Vu=-VP, V.u=0. (3.2
ments of the fundamental plus all the segments on the 23

image filaments obtained by applying the symmetries. Th
system is closed upon evaluation of the velocity at each se
ment end point of the fundamental filament, as

)'()22_)21)

X=xa| |

eUsing the transformed variables as defined above, the equa-
%ions become

-

24N 3 Jv S s > -
.- - - ri - _
U0G) = 2, Uj-1(%) 1—exp<‘%) . i=01,...N, g7 T@NTU-VJ==VQ, Ve0v=0, (33
= i
2.2
22 where
where riyj=|>2i—(>zj,1+)2j)/2| and gij 1ds d
=\/oi2+[(oj,l+ a'j)/2]2. The circulation has been set to a<T):§H:d_rlnS' (3.9

4. The endpoints are advected using a second-order Runge-
Kutta scheme. A variable time step is set as a function of
maximum rate of strain. andV. is the gradient with respect
In the interaction region the filaments experience a large This scaling is equivalent to the method of dynamic re-
axial strain rate, so a remeshing algorithm is employed ascaling used for the nonlinear Schioger equationf15-17.
needed to keep segment lengths approximately one-quart&éheir functionl(t) is the inverse of ou(t). S(t) must be
(or one-eighth of the smallest length scale. Cubic splines arechosen such that as—t;, v remains smooth, and
used to construct interpolating polynomials fofs), y(s),  S(t)— fast enough so that— c.
z(s), ando(s) from the current distribution of segment end  If S were to have the formt{;—t)~ ¢, then the function
points. A more regular distribution for the segment enda in Eg. (3.4) would be a nonzero real value far=3 only.
points is then found. Both equal-length segments throughouturthermore, if a solution were to be self-similar with this
the contour and segments which are equal in the near fielgcaling, it would manifest itself as a steady solution in the
and stretched in the far field were used, with similar resultstransformed plane. Now if a self-similar solution were found
A modification to the spherically symmetric core function with =3 (as will be observed in the results of Sectio, V
into a two-length desingularization was introduced to modethenav would equal the solenoidal projection efJ-ng;.

the slight core deformation encountered in the solution. 'tUsing rotation form. we see that= — o - VI1/v 2. wherell is
will be described in more detail in Sec. VI and in PEIZ]. 0 pressure head. '

The vorticity equation in the transformed plane is
I1l. DYNAMIC RESCALING

_cimi ish. D/ I
A self-similar FTS can be fouqd through the establl_sh —§+2a§=§~va (3.5
ment of a transformation or rescaling of the Euler equations Dr
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FIG. 3. Initial position of the vortex filament contour&) un-
linked and(b) double Borromean Brunnian-linked hexaelastibons. FIG. 4. Orthogonal view of the position of the filaments at 2
.. times during the evolution. The radius of the tubessi®. The
where/=wS™ 2. For the self-similar case is then half the black, gray, and light gray tubes represent the three orthogonal fila-

strain rate along the axis of the vortex filament. ment loop pairs. The observer is at a fixed position with respect to
The equation for the advection of passive tracers in thehe origin. The parameters for the top figure are2.40, t;
rescaled plane is —t=0.805, andS=2.14, and the number of segments is 50. The
parameters for the bottom figure aret=3.20, tgy;
DE .. —t=0.967< 10 %, andS=599, and the number of segments is 242.
E‘ =aé+v. (36)

elastic rod is centered on theaxis with the semimajor and
semiminor axes in the andx directions, respectively. The
closest distance to the origin is in the-0 plane at the point
(1,r,0). The arclength of the rod is set such that the point of
zero curvature is at=r. An image is created by reflection

To solve the initial value problem given in Eq2.1) and  about they=0 plane and four more images are created
(2.2), we must construct a reasonable initial configuration forthrough the permutation symmetry.
the filament contours. The initial condition of the vortex fila-  The double Borromean link is created by centering a rod
ment should form a closed contour P, be close to the on thex=0 axis. Semimajor and semiminor axes are in the
straight line dodecapole in the vicinity of the origin, and z andy directions. The closest point to the origin is in the
have an outer region with minimal curvature. This last con-z=0 plane at (I,,0). The resulting “hexaelastibons” are
dition allows the time scales in the outer part of the filamentshown in Fig. 3:(a) unlinked and(b) Brunnian linked. The
to be greater than those of the inner part. three pairs of contours are colored black, dark gray, and light

A smooth closed space curve that fits the conditionggray.
above can be found through the equations of an elastica. The
development of the general problem can be found in Bottega V. RESULTS
[18]; we include only a brief description here. o ]

To form a contour, a straight elastic rod is bent into a_ The initial value problem for the motion of the vortex
circle. The two ends are then “taped” together and an in-filaments is solved numerically, and the results are pre§ented
ward force is applied on either side of the ring to deform itin this section. The major finding is that in the rescaled
into a dumbbell shape. Another force is applied at the tips ircoordinates, one locally steady solution is found from nu-
the binormal direction to give the rod out-of-plane curvature.merous initial configurations. We first display the position of

We shall consider unlinked and Brunnian-link@buble  the vortex filament for a visual demonstration of local self-
Borromean combinations of the six rodsBrunnian de- similarity. More quantitative results are then presented on
scribes a link in which the removal of one component givesscaling and the behavior of the velocity and pressure in the
the unlink) The unlinked configuration is as follows. A bent collapse region. A set of hyperbolic critical points within the

There is a nonsolenoidal source flow from the origin.

IV. INITIAL CONDITION
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FIG. 7. The maximum axial strain rate multiplied by.f
—t)/2a vs t.;—t for the same cases as in the previous figure. The
maximum occurs aty.

at two times in the evolution. The thickness shown is half of
the core radius; no eccentricity is shown. The top view
is at a time 2.40 t;;—t=0.805). The scaling metri§ is
2.14, which means that, has decreased from 1 initially
to 0.467. The bottom view is at a later time of 3.20
(teii—t=0.967x107°). The metric is 599, Sox, is
FIG. 5. Orthogonal view of the position of the filaments at two 0-167<10 2. From this stationary view, the tubes in the bot-
times during the evolution. The observer is at a fixed position witht0M View appear to eminate radially from the origin. The
respect to the origin in the rescaled frame. Only the inner portion oPUter part of the loop moves only slightly during this time.
the filaments are shown. The parameters for the top figure are. Figure 5 again shows the position and thickness at two
tei—t=0.200< 10”3 and S=132, and the number of segments is (differend times in the evolution. The observer is at a con-
134. The parameters for the bottom figure aré,;  Stant distance from the origin in the rescaled frame, and only
—t=0.305<10 7 and S=10 640, and the number of segments is the region around the origin is shown. The structure of the
890. three orthogonal quadrupoles, or dodecapole, is clearly seen.
The top view is at a timet.;—t=0.210x10 3, and has a
collapse region is examined, and the evolution of a materiagcaling metric of 132. The bottom view is at a later time of
surface is followed to illustrate the potential of this solution terir—t=0.31x 1077, and has a metric of 10 640. While the
for singular focusing. All computations were performed on acollapse toward the origin is apparent in Fig. 4, the two
workstation with multidecade scaling firmly established inviews in Fig. 5 look identical, despite the difference in mag-
runs with a duration of no longer than a day. nification of a factor of 100. This is the structure of the
Figure 4 shows the position and thickness of the filamentself-similar solution.

Figure 6 shows a plot of the scaling metr&;, multiplied
by v2a(ty;—t) versus {.i—t). A number of runs are
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FIG. 6. The scaling metri§, multiplied by[2a(te—t)]*2 vs
teii— t. The unlinked initial condition wimZO: (1,4.45,0) is shown

with a solid line, (1,7.48,0) dashed, (1,3.64,0) dot-dashed, and a FIG. 8. The maximum of the vorticity multiplied by.;—t vs
linked initial condition (1,4,0) dot-dot dashed. tei—t.
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shown, including the unlinked initial condition with 120
Xo=(1,4.45,0) (solid), (1,7.48,0)(dashed} (1,3.64,0)(dot-

dasheg, and a linked initial conditior{dot-dot dashed For [ 7
all initial conditions, the functiora(t) converged to a value 115
of 0.144 . . .. Thecritical time, which was calculated by ex-
trapolating 15 to zero, is a function of the initial condition.
Within about four orders of magnitude decrease in
(tgii—t), the transients have decayed to reveal the self-
similar solution.

Figure 7 shows a plot of the maximum axial strain rate on 105 -
the filament(which occurs in thez=0 plane of the funda-
mental filament multiplied by (t.i—t)/2a versus {.i—1).
A similar scaling is found for the maximum vorticity, as B e
shown in Fig. 8. Scaling for these quantities can be inferred
from the behavior ofS, but is shown to illustrate thet {;

—1)~* scaling of the sup norm of velocity derivatives in  FIG. 10. The arc length of the fundamental filament vs
agreement with the theorems of Pont€] and Beale, Kato, t.;—t. The arc length is normalized by the valueta0.

and Majda[20]. The transients in the vorticity are longer

lived due to the rather slow convergence of the core thicksive tracers and a stretching of passive vectors will occur at
ness to its asymptotic value. these points.

Figure 9 shows a plot of the enstrophy multiplied by  Since the local solution in the rescaled frame is steady, we
Vti—t versustg—t. The reason for thet{;—t) Y2 scal-  can take the position of the filaments and the valua(e} at
ing is as follows. The enstrophy is proportional to the inte-a late time as fixed, and examine the advection of fluid par-
gral along the filament of the inverse of the core crossiicles with Eq.(3.6). Fluid particles are initially placed as a
sectional area. The integrand scalestag{t) ! along the mesh on one face of a cube centered at the origin, and with a
inner length, which scales at.;—t. The contribution from  side length of 8. Figure 11 shows the mesh surface at four
the complement of the filament is negligible after some timedifferent times in the evolution in the rescaled frame. The
Multiplying the integrand scaling by the length over which other faces are found through symmetries. The surface in the
the scaling acts gives the desired result. upper left is at a time,/4 after the initial time. The strain

Figure 10 shows a plot of the arc length of the fundamen+ate has increased by a factor of 1.3. The surfaces in the
tal filament normalized by its initial value versug;—t.  upper right, lower left, and lower right are at times
The arc length does not scale with,;,—t. This can be seen 0.44;, 0.58;, and 0.68.;, with strain rate factors 1.8,
from the perspective views of the evolution in Fig. 4. The arc2.4, and 3.2. In the rescaled frame, the divergenceajssd
length of the inner region scales aSt.;—t, leaving the the volume of the cube is increasing. In the middle of each
slowly changing arc length in the outer region to dominate.face, however, the particles near the critical points move

In the rescaled plane, the velocity field is composed of thevery slowly. The large strain rate near these points can be
a stagnation point. These six type-hyperbolic critical
points (one stable and two unstable manifgldeen move

FIG. 11. Material surfaces advected by the flow as viewed in the
rescaled frame. The surface is initially a cube with length 8. The top
3.2 at the four times. The flattened areas, which are near the critical
FIG. 9. The enstrophy multiplied byt{;—t)Y? vs t;—t. points, move only slightly.

AQYA(0)

tt:rit-t

induced velocity from the filaments and the source fgy ~ S€€n from the curling and stretching of the faces.
[see Eq(3.6)]. Along an axis, a positive source flow near the
toward the origin as/ tq;—t in the x plane, and the eigen- '
values scale ast(;—t) 1. A singular concentration of pas-

left, top right, bottom left, and bottom right are at times 0.25, 0.44,
Py T TS BT BRSBTS 0.58, and 0.68 timek,; which are equal intervals im. Strain rate

origin is met by a negative flow from the dipolar jet, creating
t,t increases exponentially a%" with factors being 1.3, 1.8, 2.4, and
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% A e FIG. 13. The ratio of radius of curvature to core thickness vs arc
o NS Re=1000 length (solid line, plotted on left axis The ratio of semimajor to
o semiminor length for the elliptical core mod@lashed line, plotted
on right axis.

the model and simulations. The “negative-positive-
negative” behavior of the dipole is more concentrated in the
model. Also, the asymmetry between the negative values is
not seen in the model. The “lip” of slightly positive curva-
ture near the origin, which mak&s,,, positive at the origin,
exists in the model also, as shown in the inset, but to a lesser

P_(t=1.5)
P_(2.0)

Vi
.40 | v

N .. magnitude.
-60 -1000 . .
0 10 20 30 4 50 6 70 80 For solutions of the filament model to represent those of
X index the Euler equations accurately, the radius of curvature of the

filament must be much larger than the core size at each point.
In Fig. 13, we plot with a solid line this ratio versus arc
length for a late time. As can be seen, the ratio remains larger
than 8. In the inner region the segment length was kept at
eight times the distance of closest approach between nonlo-
cal segments. Results were essentially unchanged when the
Ng and Bhattacharjef21] developed a sufficient condi- segment length was halved. Different'initial core thickrjesses
tion for a FTS in symmetric flows. The condition that the lways resulted in the same core thickness distribution for
fourth derivative of pressure at the origin be positive has 4N€ inner solution.
simple interpretation in the case of the self-similar solution.

FIG. 12. Qg is plotted along the axis in (a) for the filament
model (=10 640). The inset is a closeup QX near the origin
showing the lip of positive curvatur®,, is plotted along th& axis
in (b), the Navier-Stokes Eulerian simulations at timtesl.5 (left
axis, solid andt=2.0 (right axis, dashed

Letting £ be one component of, andu be the velocity VI. ELLIPTICAL CORES
component in that direction, the pressure gradient along the )
axis can be written All the results presented in Sec. V have a two-length-scale

desingularization which accounts for mild core deformation.

This is a way of extending the validity of the filament model
u, (5.9 to core deformations in the case of mild interaction of non-

local filaments. A more detailed presentation of this model
since the axis is a streamline and the flow is steady near th@nd its application to the problem of antiparallel vortex col-
origin. From incompressibility and symmetryy=—C¢®  lapse is found in Pelgl4]. We alluded to this modification
near the originand is valid to£~2), whereC is a positive in Sec. Il, but have chosen to present it after the results in
constant. The fourth derivative of rescaled pressure at therder to give the physical ramifications.

iQ (au
o~ |t

origin is then When spherical core functions were used, as given in Eq.
(2.2), a steady local solution did not develop, and the solu-
7'Q tion was not singular. The reason is clear: the core thick-

(?—g4=6aC>0. (5.2 nesses in the inner region gradually increagétieir rate of

decrease was not as high as the spatial gcaley eventu-
Also, based on our scalingg*P/dx* should scale as ally caused a core overlap between filament pairs in the di-
(tei—t) 3. poles. The mutual induced velocity decreased, causing the
Figure 12a) showsQ,, along the axis from the filament dipolar position to be farther away from the origin. This led
model, and Fig. 1&) shows P,, along the x axis for to a decrease in the axial strain rate, which then led to further
t=1.5 and 2 from the large-scale simulations of the Navier-decreases in the rate of core thickness thinning. Eventually,
Stokes equation22]. There is a general agreement betweenthe solution evolved to six separate antiparallel collapse
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problems as the dipoles became more isolated. Also, when
core overlap occurs, the filament model breaks down.

From observations of the field simulations, the cores de-
form mildly as they interact with their dipolar twifsee, for
example, Figs. 13 and 26 in Boratav and H&l. The cores
elongate as they advect toward the symmetry plane which
separates the antiparallel vortex tubes. The deformed cores
will have a negligible effect on the nonlocal dynamics, but
will effect the local intratube dynamics and possibly the di-
polar dynamics. FIG. 14. Straight filament model of topology change before and

The way this core deformation was accounted for in theafter the critical time.
filament model was through a two-length-scale core func-
tion, instead of the Symmetric core function which has ON&since the Shapes are not e”ipseS, the Comparison is on|y ap-
length scale. For symmetric cores the local induced velocityroximate. Since our cubic Gaussian vorticity distribution is
is proportional to the local curvaturén the normal direc-  considerably more concentrated than the top hat distribution,
tion) and the core thickness, and directed in the binormalhis ratio is clearly a lower bound. A ratio much closer to 1 is
For an elongated core, however, that part of the velocityexpected, suggesting that the movement of the centroid and
coming from the curvature in the elongated direction shouldhe use of the induced velocity of singular filament are valid
be proportional to a representative thickness in that directionapproximations. Slight core flattenirfigut not too muchact-
Likewise, that part of the velocity coming from the shorteneding to reorient the local induction velocity seems to be nec-
direction should involve the smaller core thickness. The locakssary for the self-similar collapsing solution to occur.
induced velocity is then not necessarily in the binormal, but
has rotated toward the elongated direction.

_ A_Ithough impreqise, we refer to this two-scale d_esir_lgular_— VIl. AETER THE CRITICAL TIME

ization as the elliptical core model, where the semimajor axis

is in the direction of elongation. Dynamic equations for the In this section we speculate on the evolution of the flow
orientation and eccentricity could be written based on theafter the critical time. From the pseudospectral Navier-
strain field; however, we use a maad hocclosure. For each Stokes simulationg3], the rapid collapse of the dodecapole,
segment, we find, in a plane transverse to the tangent, twand coincident rise in peak vorticity, is followed by an
orthonormal vectors. One is pointed toward the symmetryequally rapid decrease in vorticity and an explosive ejection
plane, and the other pointed parallel to it. They are theof small-scale vorticity from around the origin. Soon after, a
semiminor and semimajor axes, respectively. In the transnearly isotropic turbulent field develops.

verse plane, if the core thickness is greater than the distance Whereas it is difficult to ascertain the evolution of vortex-
to the symmetry plane, then the semiminor length is thatine topology during this time, an implosidexplosion sce-
latter distance. The semimajor length is then set to preserveario is suggested. We therefore look for credible “clean”
the cross-sectional area. incoming(outgoing states using the filament model, keeping

This model will be valid only if the eccentricity is not too in mind that the outgoing state is most likely unstable.
large. In the simulations, the largest eccentricity occurred at From examination of the filament configurations in Fig. 5,
s=0, with the semimajor to semiminor ratio being 1.7. Thisthere are a number of possible topology changes which could
ratio is plotted on the right-side axis in Fig. 1@ashed The  occur. Simple dipolar reconnection may occur but, since the
ratio gradually decreases to 1 as the arc length increases. local induced velocity is still inward, a change subsequent to

The nonregularized Biot-Savart law was used for all non4t must occur.
local segment contributions to the induced velocity. This was One particular state change which can occur through a
justified due to the fact that the cores from nonlocal segseries of reconnections is termed the “pass-through” sce-
ments did not overlap with any nodes at which the velocitynario. The incoming and outgoing states are shown in the
was evaluated. The difference between the regularized areartoon in Fig. 14. The black vortices which are moving
nonregularized induced velocity from these nonlocal segtoward the origin and straddle the vertizadxis, move away
ments was negligible. from their dipolar companions, pass through the dark gray

While there was no core overlap of nonlocal segmentsand light gray vortices, pair with their images and move
the extent to which the centroid movement and point apaway from the origin straddling theaxis. The dark gray and
proximation to a elongated core is valid, however, must bdight gray vortices behave similarly with permutation.
checked. In particular, changes in the dipolar translation ve- If the topology of the incoming state in Fig. 14 is un-
locity from deformed cores may be significant. We shall trylinked, the outgoing topology is Brunnian linked as in Fig.
to provide bounds by using the exact two-dimensiq@a)  3(b), with an important exception—the circulation has
solutions of translating dipoles with a constant vorticity dis-changed sigr{there is also ar/2 rotatior). Since the sign
tribution as found by Pierrehumbd@3] and Wu, Overman, reversal of circulation results in time-reversed dynamics, and
and Zabusky 24]. since we have already established that the Brunnian-linked

In the 2D steady translating dipole solution with a nor- configuration collapses, the outgoing state is simply the time-
malized average radius of about 1.3 and an elongation of 1.7eversed evolution of the Brunnian-linked configuration.
the ratio of the actual induced velocity to that of a pointThere is, therefore, one local self-similar solution for
vortex with the same circulation is about 0.85. Note that,|t.;—t|—0.
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VIIl. CONCLUDING REMARKS

We have identified a locally self-similar solution to a vor-
tex filament model which has a pointwise singularity in real 6
time. Put another way, we have established an attracting
steady solution to the dynamically rescaled filament equa-
tions in which the logarithmic derivative of the scaling met-
ric is a nonzero constant. Physically, six elongated vortex
rings placed symmetrically about the origin, and straddling
each axis, collapse toward the origin in such a way as to look
steady in a frame whose magnification increases tag (
—t) Y2 about the origin. It was necessary to model core
deformation in order to attain this solution.

The scalings are as follows. The metric has the form

S=[2a( ,tc”t_t)]_:llz' The position of poinkq Oflgle funda- FIG. 15. Streamlines in the rescaled frame in the plan® at
mental filament ixo=(1,46 . ..,0f 2a(t—t)]7< The ve- 5 |ate time.

locity at x, of the fundamental filament is

Uo=—(1,46 . ..,0fa/2(te—t) 1Y% The axial strain rate at for determining the answer. It is encouraging that the well-
the same point is & (t.;—1t). The average vorticity across known necessary conditions for consistency of filament so-
the cross section at the same point iso, lutions(large radius of curvature to core size, no core over-
=(0.59...)¢tei—t) " where the constant ®5.. is a lap) are satisfied. The visual similarity between isosurfaces
function of the particular core shape. of the field simulation in Fig. 1 and filament position in Fig.
The inner solution is attracting within a class of initial 5 is also supportive. To investigate whether there is a rate of
conditions with bilateral and permutation symmetries. Criti-Strain present near the filaments which would cause severe
cal points within the collapsing structure suggest that fluiddeformation of material lines and hence vorticity contours, in
particles may be trapped there and singular focusing result§ig. 15 we plot a few streamlines at a late time in the res-
The sufficient condition for singularity of Ng and Bhatta- caled frame in the plane=0. The streamlines are elliptical
charjed21] has a particularly simple form in this model. It is reflecting the elliptical core distribution, but show little other
conjectured that the topology change at the critical time aldeformation. Despite the divergence of the source flow being
lows a subsequent self-similar expanding solution with a3a, the axial strain rate about the filaments creates a region

change in the linkage of the vortex lines. It also suggests tha¥ith approximately closed streamlines.
the singularity is pointwise in time. In summary, only a field simulation which displays a sub-

The (t,—t) * scaling of the vorticity and strain rate stantial scaling range and adequate resolution can determine
agrees with the theorems by Beale, Kato, and Mgfhand  Whether there is a self-similar FTS to the incompressible
Ponce[19]. The power of the length scalg, obeys the semi- Euler equations. The model solution in this paper provides a
norm estimate of or larger when velocity is not bounded possible structure to the inner and outer solutions, scaling
(Constantin25]). The theorem by Constantin and Feffermanlaw predictions, and tools such as dynamic rescaling to carry
[26] concerning the spatial correlation of the vorticity unit OUt such simulations.
vector is not violated. Indeed, there are always orthogonal
vortex Iine_s in arD(1) neighborhood of the res_caled frame, ACKNOWLEDGMENTS
and there is nonzero curvature of the vortex lines.

Is there an Euler solution similar to that of the flament Thanks go to A. Bhattacharjee, O. Boratav, W. Bottega,
model? The extent to which core deformation occurs in the/. Fernandez, J. Greene, V. Malkin, D. Meiron, V. Scheffer,
field solution and effects the subsequent dynamics is criticaM. Shelley, E. Siggia, and N. Zabusky for useful discussions.
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