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Locally self-similar, finite-time collapse in a high-symmetry vortex filament model

R. B. Pelz*
Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey 08855-0909

~Received 14 May 1996; revised manuscript received 10 October 1996!

A locally self-similar solution is found using a vortex filament model. The solution is steady in a rescaled
frame with magnification (tcrit2t)21/2 about the origin. A finite-time singularity results in which velocity,
vorticity, and enstrophy scale astcrit2t to powers21/2, 21, and21/2, respectively. The initial flow is six
closed vortex contours symmetric around and propagating toward the origin. The self-similar inner solution
consists of three orthogonal filament quadrupoles centered about the origin. The solution is attracting within a
space of symmetries preserved by the incompressible Navier-Stokes and Euler equations. The numerical
method consists of piecewise straight vortex segments with a standard variable core regularization model.
Small core deformation is modeled with a two-length scale core function. This solution is similar to the
candidate singular flow suggested by Boratav and Pelz@Phys. Fluids6, 2757 ~1994!# in their large-scale
pseudospectral simulations. The steady inner solution has a set of hyperbolic critical points around which
singular focusing occurs. It is conjectured that the singularity is pointwise in time as well as in space, and a
smooth expanding solution exists which is symmetric with the collapsing solution about the critical time.
@S1063-651X~97!15202-3#

PACS number~s!: 47.15.Ki, 03.40.Gc, 47.32.Cc
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I. INTRODUCTION

The assumption that smooth solutions to the equation
a three-dimensional incompressible flow exist for all tim
has not been proven. If a smooth initial flow were found th
develops a singularity in finite time, the validity of the equ
tions of ideal hydrodynamics would have to be reasses
Such a flow, if stable, may also have applications such
focusing or rapid mixing. Many investigations, both analy
and numerical, have established bounds, conditions and
sible candidate flows for a finite-time singularity~FTS!, but
none has shown its existence definitively@1#.

Numerical solutions of Kerr@2# and Boratav and Pelz@3#
present strong evidence of a FTS. Figure 1, from simulati
in the latter reference, shows isosurfaces of vorticity mag
tude~a! at an early time and low magnitude, and~b! at a late
time and higher magnitude. The flow structure is terme
vortex dodecapole. The former isosurface is on the scal
the domain, and the latter on the scale of the grid size.
flow is highly symmetric, using all the symmetries of th
Navier-Stokes equation, and appears visually self-sim
These simulations use a pseudospectral method with e
tive resolution of 10243 modes; one decade of (tcrit2t)21

scaling in vorticity is found.
It is evident from this example that, with large-scale sim

lation, singular flows can only be suggested. The role of s
simulations is to motivate possible analyses or simpler m
els which bring us closer to the establishment of a FTS.

In the present paper, a vortex filament method is use
model the collapsing vortex structure observed by Bora
and Pelz@3#. With a simpler model, higher resolution and
better understanding of the solutions can be achieved. In
1, the vortex lines are approximately tangent to the surfa

*FAX: 908-445-3653, -5313. Electronic addres
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but intersect it at the ends. The topology of the tubes is ra
simple. The radius of curvature of the tubes appears to
large compared to the core thickness. The isosurface of
ticity actually appears more cylindrical at later times, su
gesting that core deformation is slight. For these reasons
believe that this flow can be modeled with a filame
method.

We show in this paper that there exists a steady collaps
solution to a vortex filament model of the vortex dodecap
shown in Fig. 1. The steady solution is in a frame resca
about the origin such that the magnification is (tcrit2t)21/2.
Since the spatial scale goes to zero in finite time, the indu
velocity scales as the magnification. Since the core size g
to zero, constant circulation causes the vorticity to scale
(tcrit2t)21. The same inner solution was found for differe
initial positions and core thicknesses. Thus a finite-time s
gularity is found in the filament model in the form of a
attracting, locally self-similar collapsing solution.

In a series of papers, Siggia and Pumir presented evide
of a FTS in which two vortex filaments align in an antipa
allel fashion and collapse. Initially they found that the ra

FIG. 1. Isosurfaces of vorticity magnitude from large-sca
simulations:~a! at t51.5 and uvu510, and ~b! at t52.125 and
uvu5100.
1617 © 1997 The American Physical Society
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1618 55R. B. PELZ
of radius of curvature to core size approached unity, mak
the filament approximation an invalid model of the Eu
equations@4,5#. Later, they showed, with a locally conserv
tive core model, that the ratio does remain greater than 1,
the cores overlap significantly@6#. Waele and Aarts@7# also
studied the antiparallel collapse problem with a filame
model. They showed evidence of a FTS up to the point w
the cores overlapped. Finally, Pumir and Siggia showed
core deformation in a Eulerian simulation~which would oc-
cur at the time of filament core overlap! caused a saturatio
of the axial strain rate which allowed only an exponent
blow-up@8#. This finding was substantiated by simulations
Shelley, Meiron, and Orszag@9#. In the simulations of Kerr
@2#, singular behavior was observed for the antiparallel c
lapse problem if the initial flow was carefully filtered.

The filament solution presented in this paper does
involve an antiparallel collapse. The solution does invo
six vortex dipoles, but their position from the origin, sepa
tion distance and core radius all scale asA tcrit2t. At the
critical time, all 12 vortices have converged to the orig
and the core radius there has shrunk to zero.

Mild core deformation seen in the field simulations
modeled in our filament computation by a two-length-sc
desingularization. With this, there is no core overlap of no
local vortex segments. While we find no evidence in the fi
or filament simulations of strong strain rates which wou
cause large core deformation in the field solution, this eff
is not accounted for in the filament model. If present in t
field solution, core deformation dynamics could cause a m
jor difference between the field and filament solutions.

Physically, in order for a FTS to occur through vorte
stretching, the rate of strain along the axis of the vor
should increase with the vorticity. In the vorticity isosurfa
plot of the dodecapole in Fig. 1 or its filament conceptu
ization, Fig. 2, such a connection can be seen. Each qua
pole creates a strain field along the axis of the quadrup
which lies orthogonally inside it. The vortex tubes a
stretched and the vorticity is increased. As the two dip
pairs of each quadrupole advect toward the origin, the a

FIG. 2. The straight-line filament dodecapole.
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strain rate they exert on the inside quadrupole also increa
This flow may exhibit the necessary feedback mechan
between vorticity and axial strain rate.

The organization of the paper is as follows. In Sec. II w
present the vortex filament model with piecewise linear s
ments and variable core function. We then describe, in S
III, the dynamic rescaling technique employed in the L
grangian frame. In Sec. IV we briefly describe how the init
condition for the filaments was constructed. The results
the computations are presented in Sec. V. A modification
the filament model which takes into account local core
formation is then discussed in Sec. VI. The solution after
critical time is discussed in Sec. VII, and concluding rema
are made in Sec. VIII.

II. VORTEX FILAMENT MODEL

To construct a vortex filament model of the dodecap
shown in Fig. 1, we make the following assumptions a
restrictions.

~i! Each of the vortex tubes seen in Fig. 1 can be repla
by single vortex filament. It is observed that the cores rem
separate and do not interact significantly, the core thickn
is on the order of the distance to the closest bilateral sy
metry plane, and the radius of curvature is greater than
core thickness. An isolated and concentrated vorticity dis
bution is necessary for the filament model to approximate
Euler equations.

~ii ! Bilateral symmetry on all the ‘‘0’’ planes, which is
preserved by the Navier-Stokes equations, is used. From
symmetry, the streamlines lie in the ‘‘0’’ planes and on t
axes. The axes are vorticity nulls, and only normal vortic
may be nonzero on the planes. The tangential vorticity n
the plane has an equal and opposite image vorticity ac
the plane.

~iii ! The permutation symmetry on vorticity
vx(x,y,z)5vy(z,x,y)5vz(y,z,x), which is also preserved
by the equations of motion, is used. This symmetry is imp
tant because it allows a coupling between the vorticity o
tube and the externally applied axial strain rate. It was
used in the high-symmetry Taylor-Green vortex simulatio
of Brachet et al. @10#, which yielded only exponentia
growth.

The stability of the solutions to symmetry-breaking pe
turbations will not be addressed here. Our approach is
gather evidence for the existence of a FTS in a restric
space first. While we do not speculate on stability, the es
lishment of even an unstable solution trajectory, which en
in a FTS, is important.

We consider a filament beginning in the planez50 close
to the origin with the vector pointing into the first octa
(x,y,z.0). The filament extends orthogonally into the fir
octant, and ends in the planex50 ~again orthogonally! fur-
ther away from the origin.~We shall also consider a filamen
which ends in the planey50.! This fundamental filament is
a smooth space curve represented byxW (s), wheres is the arc
length from 0 at thez50 plane tos* at thex50 plane. The
bilateral symmetries create, from the fundamental filamen
closed contour lying in they.0 half-space and an imag
contour in they,0 half-space. From the permutation sym
metry, an image of the fundamental filament, extending fr
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55 1619LOCALLY SELF-SIMILAR, FINITE-TIME COLLAPSE . . .
the x50 plane, plus the bilateral images, make up two c
tours. Another application of the permutation symme
gives two more. Thus six closed filament contours are c
ated which are completely determined by the fundament

The fundamental vortex filament curvexW (s), s5@0,s* #
is discretized for numerical computation intoN piecewise
straight vortex segments connected end to end, thei th
extending from xW i21 to xW i , i51,2, . . . ,N. xW0
5xW (0) xWN5xW (s* ). The velocity field at pointx

W , induced by
a straight vortex filament with end points 1 and 2, is

uW 1,2~xW !5
G

4p S xW2xW1

uxW2xW1u
2

xW2xW2

uxW2xW2u
D •~xW22xW1!

(xW2xW1)3~xW2xW2!

u~xW2xW1!3~xW2xW2!u2
, ~2.1!

whereG is the circulation. A core-cutoff function is used t
avoid the singularity inherent in an infinitesimally thin fila
ment with nonzero curvature. We use a cubic Gaussian
function for the vorticity distribution~see Knio and Ghoniem
@11#, Leonard@12#, and Fernandez, Zabusky, and Gryan
@13# for more details!. A local, volume-conserving expres
sion is used to update the core thicknesss for each segment
s i
2uxW i112xW i u5const. The velocity at a point on the fund

mental filament has a contribution from all the other se
ments of the fundamental plus all the segments on the
image filaments obtained by applying the symmetries. T
system is closed upon evaluation of the velocity at each s
ment end point of the fundamental filament, as

uW ~xW i !5(
j51

24N

uW j21,j~xW i !F12expS 2
r i , j
s i , j

D 3G , i50,1, . . . ,N,

~2.2!

where r i , j5uxW i2(xW j211xW j )/2u and s i , j

5As i
21@(s j211s j )/2#2. The circulation has been set t

4p. The endpoints are advected using a second-order Ru
Kutta scheme. A variable time step is set as a function
maximum rate of strain.

In the interaction region the filaments experience a la
axial strain rate, so a remeshing algorithm is employed
needed to keep segment lengths approximately one-qu
~or one-eighth! of the smallest length scale. Cubic splines a
used to construct interpolating polynomials forx(s), y(s),
z(s), ands(s) from the current distribution of segment en
points. A more regular distribution for the segment e
points is then found. Both equal-length segments through
the contour and segments which are equal in the near
and stretched in the far field were used, with similar resu

A modification to the spherically symmetric core functio
into a two-length desingularization was introduced to mo
the slight core deformation encountered in the solution
will be described in more detail in Sec. VI and in Pelz@14#.

III. DYNAMIC RESCALING

A self-similar FTS can be found through the establis
ment of a transformation or rescaling of the Euler equati
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in which the solution is locally steady. In this section, w
present such a scaling and apply it to the filament mode

We define a transformed spatial variablejW , in which the
minimum interfilament distance is order unity. Since the c
lapse of the vortex filament is expected to be isotropic a
about the origin, the transformation isjW5S(t)xW , where the
scaling metricS is a function of time only. In keeping with
the initial condition ofx0(t50)51, the scaling metric was
chosen to be

S~ t !5
1

x0~ t !
~3.1!

so as to keepjW0(t)• î unity.
The velocityvW in the rescaled plane is easily seen to

vW 5uW /S, and is also of unit order. In this model, if the fila
ments collapse to the origin in real time@i.e., 1/S(tcrit)50],
the induced velocity on the filaments at the origin is singul
Velocity derivative terms scale asS22 in the rescaled plane
A rescaled time variable,t, defined through the velocity de
rivative scale, isdt5S2dt.

The equations of ideal hydrodynamics in a Eulerian fra
are

]uW

]t
1uW •¹W uW 52¹W P, ¹W •uW 50. ~3.2!

Using the transformed variables as defined above, the e
tions become

]vW

]t
1„a~t!1vW •¹W j…vW 52¹W jQ, ¹W j•vW 50, ~3.3!

where

a~t!5
1

S3
dS

dt
5

d

dt
lnS, ~3.4!

and¹WW j is the gradient with respect toj.
This scaling is equivalent to the method of dynamic

scaling used for the nonlinear Scho¨dinger equations@15–17#.
Their function l (t) is the inverse of ourS(t). S(t) must be
chosen such that ast→tcrit , v remains smooth, and
S(t)→` fast enough so thatt→`.

If S were to have the form (tcrit2t)2a, then the function
a in Eq. ~3.4! would be a nonzero real value fora5 1

2 only.
Furthermore, if a solution were to be self-similar with th
scaling, it would manifest itself as a steady solution in t
transformed plane. Now if a self-similar solution were fou
with a5 1

2 ~as will be observed in the results of Section V!,
thenavW would equal the solenoidal projection of2vW •¹W jvW .
Using rotation form, we see thata52vW •¹W P/v2, whereP is
the pressure head.

The vorticity equation in the transformed plane is

DzW

Dt
12azW5zW•¹W xvW ~3.5!
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1620 55R. B. PELZ
wherezW5vW S22. For the self-similar case,a is then half the
strain rate along the axis of the vortex filament.

The equation for the advection of passive tracers in
rescaled plane is

DjW

Dt
5ajW1vW . ~3.6!

There is a nonsolenoidal source flow from the origin.

IV. INITIAL CONDITION

To solve the initial value problem given in Eqs.~2.1! and
~2.2!, we must construct a reasonable initial configuration
the filament contours. The initial condition of the vortex fil
ment should form a closed contour inR3, be close to the
straight line dodecapole in the vicinity of the origin, an
have an outer region with minimal curvature. This last co
dition allows the time scales in the outer part of the filam
to be greater than those of the inner part.

A smooth closed space curve that fits the conditio
above can be found through the equations of an elastica.
development of the general problem can be found in Bott
@18#; we include only a brief description here.

To form a contour, a straight elastic rod is bent into
circle. The two ends are then ‘‘taped’’ together and an
ward force is applied on either side of the ring to deform
into a dumbbell shape. Another force is applied at the tips
the binormal direction to give the rod out-of-plane curvatu

We shall consider unlinked and Brunnian-linked~double
Borromean! combinations of the six rods.~Brunnian de-
scribes a link in which the removal of one component giv
the unlink.! The unlinked configuration is as follows. A ben

FIG. 3. Initial position of the vortex filament contours:~a! un-
linked and~b! double Borromean Brunnian-linked hexaelastibon
e
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elastic rod is centered on they axis with the semimajor and
semiminor axes in thez andx directions, respectively. The
closest distance to the origin is in thez50 plane at the point
(1,r ,0). The arclength of the rod is set such that the point
zero curvature is atz5r . An image is created by reflectio
about they50 plane and four more images are creat
through the permutation symmetry.

The double Borromean link is created by centering a
on thex50 axis. Semimajor and semiminor axes are in t
z and y directions. The closest point to the origin is in th
z50 plane at (1,r ,0). The resulting ‘‘hexaelastibons’’ ar
shown in Fig. 3:~a! unlinked and~b! Brunnian linked. The
three pairs of contours are colored black, dark gray, and l
gray.

V. RESULTS

The initial value problem for the motion of the vorte
filaments is solved numerically, and the results are prese
in this section. The major finding is that in the rescaledjW
coordinates, one locally steady solution is found from n
merous initial configurations. We first display the position
the vortex filament for a visual demonstration of local se
similarity. More quantitative results are then presented
scaling and the behavior of the velocity and pressure in
collapse region. A set of hyperbolic critical points within th

FIG. 4. Orthogonal view of the position of the filaments at
times during the evolution. The radius of the tubes iss/2. The
black, gray, and light gray tubes represent the three orthogonal
ment loop pairs. The observer is at a fixed position with respec
the origin. The parameters for the top figure aret52.40, tcrit
2t50.805, andS52.14, and the number of segments is 50. T
parameters for the bottom figure aret53.20, tcrit
2t50.96731025, andS5599, and the number of segments is 24
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55 1621LOCALLY SELF-SIMILAR, FINITE-TIME COLLAPSE . . .
collapse region is examined, and the evolution of a mate
surface is followed to illustrate the potential of this soluti
for singular focusing. All computations were performed on
workstation with multidecade scaling firmly established
runs with a duration of no longer than a day.

Figure 4 shows the position and thickness of the filame

FIG. 5. Orthogonal view of the position of the filaments at tw
times during the evolution. The observer is at a fixed position w
respect to the origin in the rescaled frame. Only the inner portio
the filaments are shown. The parameters for the top figure
tcrit2t50.20031023 andS5132, and the number of segments
134. The parameters for the bottom figure aretcrit
2t50.30531027 andS510 640, and the number of segments
890.

FIG. 6. The scaling metricS, multiplied by @2a(tcrit2t)#1/2 vs

tcrit2t. The unlinked initial condition withxW05(1,4.45,0) is shown
with a solid line, (1,7.48,0) dashed, (1,3.64,0) dot-dashed, an
linked initial condition (1,4,0) dot-dot dashed.
al

ts

at two times in the evolution. The thickness shown is half
the core radius; no eccentricity is shown. The top vie
is at a time 2.40 (tcrit2t50.805). The scaling metricS is
2.14, which means thatx0 has decreased from 1 initially
to 0.467. The bottom view is at a later time of 3.2
(tcrit2t50.96731025). The metric is 599, sox0 is
0.16731022. From this stationary view, the tubes in the bo
tom view appear to eminate radially from the origin. Th
outer part of the loop moves only slightly during this time

Figure 5 again shows the position and thickness at
~different! times in the evolution. The observer is at a co
stant distance from the origin in the rescaled frame, and o
the region around the origin is shown. The structure of
three orthogonal quadrupoles, or dodecapole, is clearly s
The top view is at a timetcrit2t50.21031023, and has a
scaling metric of 132. The bottom view is at a later time
tcrit2t50.3131027, and has a metric of 10 640. While th
collapse toward the origin is apparent in Fig. 4, the tw
views in Fig. 5 look identical, despite the difference in ma
nification of a factor of 100. This is the structure of th
self-similar solution.

Figure 6 shows a plot of the scaling metric,S, multiplied
by A2a(tcrit2t) versus (tcrit2t). A number of runs are

h
f
e.

a

FIG. 7. The maximum axial strain rate multiplied by (tcrit
2t)/2a vs tcrit2t for the same cases as in the previous figure. T

maximum occurs atxW0.

FIG. 8. The maximum of the vorticity multiplied bytcrit2t vs
tcrit2t.
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1622 55R. B. PELZ
shown, including the unlinked initial condition with
xW05(1,4.45,0) ~solid!, (1,7.48,0)~dashed!, (1,3.64,0)~dot-
dashed!, and a linked initial condition~dot-dot dashed!. For
all initial conditions, the functiona(t) converged to a value
of 0.144 . . . . Thecritical time, which was calculated by ex
trapolating 1/S to zero, is a function of the initial condition
Within about four orders of magnitude decrease
(tcrit2t), the transients have decayed to reveal the s
similar solution.

Figure 7 shows a plot of the maximum axial strain rate
the filament~which occurs in thez50 plane of the funda-
mental filament! multiplied by (tcrit2t)/2a versus (tcrit2t).
A similar scaling is found for the maximum vorticity, a
shown in Fig. 8. Scaling for these quantities can be infer
from the behavior ofS, but is shown to illustrate the (tcrit
2t)21 scaling of the sup norm of velocity derivatives
agreement with the theorems of Ponce@19# and Beale, Kato,
and Majda@20#. The transients in the vorticity are longe
lived due to the rather slow convergence of the core thi
ness to its asymptotic value.

Figure 9 shows a plot of the enstrophy multiplied
Atcrit2t versustcrit2t. The reason for the (tcrit2t)21/2 scal-
ing is as follows. The enstrophy is proportional to the in
gral along the filament of the inverse of the core cro
sectional area. The integrand scales as (tcrit2t)21 along the
inner length, which scales asA tcrit2t. The contribution from
the complement of the filament is negligible after some tim
Multiplying the integrand scaling by the length over whic
the scaling acts gives the desired result.

Figure 10 shows a plot of the arc length of the fundam
tal filament normalized by its initial value versustcrit2t.
The arc length does not scale withtcrit2t. This can be seen
from the perspective views of the evolution in Fig. 4. The a
length of the inner region scales asA tcrit2t, leaving the
slowly changing arc length in the outer region to domina

In the rescaled plane, the velocity field is composed of
induced velocity from the filaments and the source flowajW
@see Eq.~3.6!#. Along an axis, a positive source flow near t
origin is met by a negative flow from the dipolar jet, creati
a stagnation point. These six type-B hyperbolic critical
points ~one stable and two unstable manifolds! then move
toward the origin asA tcrit2t in the xW plane, and the eigen
values scale as (tcrit2t)21. A singular concentration of pas

FIG. 9. The enstrophy multiplied by (tcrit2t)1/2 vs tcrit2t.
f-

n
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sive tracers and a stretching of passive vectors will occu
these points.

Since the local solution in the rescaled frame is steady,
can take the position of the filaments and the value ofa(t) at
a late time as fixed, and examine the advection of fluid p
ticles with Eq.~3.6!. Fluid particles are initially placed as
mesh on one face of a cube centered at the origin, and w
side length of 8. Figure 11 shows the mesh surface at f
different times in the evolution in the rescaled frame. T
other faces are found through symmetries. The surface in
upper left is at a timetcrit/4 after the initial time. The strain
rate has increased by a factor of 1.3. The surfaces in
upper right, lower left, and lower right are at time
0.44tcrit , 0.58tcrit , and 0.68tcrit , with strain rate factors 1.8
2.4, and 3.2. In the rescaled frame, the divergence is 3a, so
the volume of the cube is increasing. In the middle of ea
face, however, the particles near the critical points mo
very slowly. The large strain rate near these points can
seen from the curling and stretching of the faces.

FIG. 10. The arc length of the fundamental filament
tcrit2t. The arc length is normalized by the value att50.

FIG. 11. Material surfaces advected by the flow as viewed in
rescaled frame. The surface is initially a cube with length 8. The
left, top right, bottom left, and bottom right are at times 0.25, 0.4
0.58, and 0.68 timestcrit which are equal intervals int. Strain rate
increases exponentially ase2at, with factors being 1.3, 1.8, 2.4, an
3.2 at the four times. The flattened areas, which are near the cri
points, move only slightly.



-
e
s
n

th

t

th

er
e

e-
the
s is
-

sser

of
the
oint.
rc
rger
t at
nlo-
the

ses
for

ale
n.
el
n-
del
ol-

in

Eq.
lu-
ck-

di-
the
d
her
ally,
se

arc
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Ng and Bhattacharjee@21# developed a sufficient condi
tion for a FTS in symmetric flows. The condition that th
fourth derivative of pressure at the origin be positive ha
simple interpretation in the case of the self-similar solutio
Letting j be one component ofjW , and u be the velocity
component in that direction, the pressure gradient along
axis can be written

]Q

]j
52S ]u

]j
1aDu, ~5.1!

since the axis is a streamline and the flow is steady near
origin. From incompressibility and symmetry,u52Cj3

near the origin~and is valid toj'2), whereC is a positive
constant. The fourth derivative of rescaled pressure at
origin is then

]4Q

]j4
56aC.0. ~5.2!

Also, based on our scaling,]4P/]x4 should scale as
(tcrit2t)23.

Figure 12~a! showsQjj along thej axis from the filament
model, and Fig. 12~b! shows Pxx along the x axis for
t51.5 and 2 from the large-scale simulations of the Navi
Stokes equations@22#. There is a general agreement betwe

FIG. 12. Qjj is plotted along thej axis in ~a! for the filament
model (S510 640). The inset is a closeup ofQjj near the origin
showing the lip of positive curvature.Pxx is plotted along thex axis
in ~b!, the Navier-Stokes Eulerian simulations at timest51.5 ~left
axis, solid! and t52.0 ~right axis, dashed!.
a
.

e

he

e

-
n

the model and simulations. The ‘‘negative-positiv
negative’’ behavior of the dipole is more concentrated in
model. Also, the asymmetry between the negative value
not seen in the model. The ‘‘lip’’ of slightly positive curva
ture near the origin, which makesPxxxxpositive at the origin,
exists in the model also, as shown in the inset, but to a le
magnitude.

For solutions of the filament model to represent those
the Euler equations accurately, the radius of curvature of
filament must be much larger than the core size at each p
In Fig. 13, we plot with a solid line this ratio versus a
length for a late time. As can be seen, the ratio remains la
than 8. In the inner region the segment length was kep
eight times the distance of closest approach between no
cal segments. Results were essentially unchanged when
segment length was halved. Different initial core thicknes
always resulted in the same core thickness distribution
the inner solution.

VI. ELLIPTICAL CORES

All the results presented in Sec. V have a two-length-sc
desingularization which accounts for mild core deformatio
This is a way of extending the validity of the filament mod
to core deformations in the case of mild interaction of no
local filaments. A more detailed presentation of this mo
and its application to the problem of antiparallel vortex c
lapse is found in Pelz@14#. We alluded to this modification
in Sec. II, but have chosen to present it after the results
order to give the physical ramifications.

When spherical core functions were used, as given in
~2.2!, a steady local solution did not develop, and the so
tion was not singular. The reason is clear: the core thi
nesses in the inner region gradually increased.~Their rate of
decrease was not as high as the spatial scale.! They eventu-
ally caused a core overlap between filament pairs in the
poles. The mutual induced velocity decreased, causing
dipolar position to be farther away from the origin. This le
to a decrease in the axial strain rate, which then led to furt
decreases in the rate of core thickness thinning. Eventu
the solution evolved to six separate antiparallel collap

FIG. 13. The ratio of radius of curvature to core thickness vs
length ~solid line, plotted on left axis!. The ratio of semimajor to
semiminor length for the elliptical core model~dashed line, plotted
on right axis!.
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problems as the dipoles became more isolated. Also, w
core overlap occurs, the filament model breaks down.

From observations of the field simulations, the cores
form mildly as they interact with their dipolar twin~see, for
example, Figs. 13 and 26 in Boratav and Pelz@3#!. The cores
elongate as they advect toward the symmetry plane wh
separates the antiparallel vortex tubes. The deformed c
will have a negligible effect on the nonlocal dynamics, b
will effect the local intratube dynamics and possibly the
polar dynamics.

The way this core deformation was accounted for in
filament model was through a two-length-scale core fu
tion, instead of the symmetric core function which has o
length scale. For symmetric cores the local induced velo
is proportional to the local curvature~in the normal direc-
tion! and the core thickness, and directed in the binorm
For an elongated core, however, that part of the velo
coming from the curvature in the elongated direction sho
be proportional to a representative thickness in that direct
Likewise, that part of the velocity coming from the shorten
direction should involve the smaller core thickness. The lo
induced velocity is then not necessarily in the binormal,
has rotated toward the elongated direction.

Although imprecise, we refer to this two-scale desingul
ization as the elliptical core model, where the semimajor a
is in the direction of elongation. Dynamic equations for t
orientation and eccentricity could be written based on
strain field; however, we use a moread hocclosure. For each
segment, we find, in a plane transverse to the tangent,
orthonormal vectors. One is pointed toward the symme
plane, and the other pointed parallel to it. They are
semiminor and semimajor axes, respectively. In the tra
verse plane, if the core thickness is greater than the dista
to the symmetry plane, then the semiminor length is t
latter distance. The semimajor length is then set to pres
the cross-sectional area.

This model will be valid only if the eccentricity is not to
large. In the simulations, the largest eccentricity occurred
s50, with the semimajor to semiminor ratio being 1.7. Th
ratio is plotted on the right-side axis in Fig. 13~dashed!. The
ratio gradually decreases to 1 as the arc length increase

The nonregularized Biot-Savart law was used for all no
local segment contributions to the induced velocity. This w
justified due to the fact that the cores from nonlocal s
ments did not overlap with any nodes at which the veloc
was evaluated. The difference between the regularized
nonregularized induced velocity from these nonlocal s
ments was negligible.

While there was no core overlap of nonlocal segmen
the extent to which the centroid movement and point
proximation to a elongated core is valid, however, must
checked. In particular, changes in the dipolar translation
locity from deformed cores may be significant. We shall
to provide bounds by using the exact two-dimensional~2D!
solutions of translating dipoles with a constant vorticity d
tribution as found by Pierrehumbert@23# and Wu, Overman,
and Zabusky@24#.

In the 2D steady translating dipole solution with a no
malized average radius of about 1.3 and an elongation of
the ratio of the actual induced velocity to that of a po
vortex with the same circulation is about 0.85. Note th
en
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since the shapes are not ellipses, the comparison is only
proximate. Since our cubic Gaussian vorticity distribution
considerably more concentrated than the top hat distribut
this ratio is clearly a lower bound. A ratio much closer to 1
expected, suggesting that the movement of the centroid
the use of the induced velocity of singular filament are va
approximations. Slight core flattening~but not too much! act-
ing to reorient the local induction velocity seems to be n
essary for the self-similar collapsing solution to occur.

VII. AFTER THE CRITICAL TIME

In this section we speculate on the evolution of the flo
after the critical time. From the pseudospectral Navi
Stokes simulations@3#, the rapid collapse of the dodecapol
and coincident rise in peak vorticity, is followed by a
equally rapid decrease in vorticity and an explosive eject
of small-scale vorticity from around the origin. Soon after
nearly isotropic turbulent field develops.

Whereas it is difficult to ascertain the evolution of vorte
line topology during this time, an implosion~explosion! sce-
nario is suggested. We therefore look for credible ‘‘clea
incoming~outgoing! states using the filament model, keepin
in mind that the outgoing state is most likely unstable.

From examination of the filament configurations in Fig.
there are a number of possible topology changes which co
occur. Simple dipolar reconnection may occur but, since
local induced velocity is still inward, a change subsequen
it must occur.

One particular state change which can occur throug
series of reconnections is termed the ‘‘pass-through’’ s
nario. The incoming and outgoing states are shown in
cartoon in Fig. 14. The black vortices which are movi
toward the origin and straddle the verticalz axis, move away
from their dipolar companions, pass through the dark g
and light gray vortices, pair with their images and mo
away from the origin straddling they axis. The dark gray and
light gray vortices behave similarly with permutation.

If the topology of the incoming state in Fig. 14 is un
linked, the outgoing topology is Brunnian linked as in Fi
3~b!, with an important exception—the circulation ha
changed sign~there is also ap/2 rotation!. Since the sign
reversal of circulation results in time-reversed dynamics, a
since we have already established that the Brunnian-lin
configuration collapses, the outgoing state is simply the tim
reversed evolution of the Brunnian-linked configuratio
There is, therefore, one local self-similar solution f
utcrit2tu→0.

FIG. 14. Straight filament model of topology change before a
after the critical time.
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VIII. CONCLUDING REMARKS

We have identified a locally self-similar solution to a vo
tex filament model which has a pointwise singularity in re
time. Put another way, we have established an attrac
steady solution to the dynamically rescaled filament eq
tions in which the logarithmic derivative of the scaling me
ric is a nonzero constant. Physically, six elongated vor
rings placed symmetrically about the origin, and straddl
each axis, collapse toward the origin in such a way as to l
steady in a frame whose magnification increases astcrit
2t)21/2 about the origin. It was necessary to model co
deformation in order to attain this solution.

The scalings are as follows. The metric has the fo
S5@2a( tcrit2t)#21/2. The position of pointxW0 of the funda-
mental filament isxW05(1,4.6 . . . ,0)@2a(tcrit2t)#1/2. The ve-
locity at xW0 of the fundamental filament is
uW 052(1,4.6 . . . ,0)@a/2(tcrit2t)#1/2. The axial strain rate a
the same point is 2a/(tcrit2t). The average vorticity acros
the cross section at the same point isvW 0
5(0.59 . . . )(tcrit2t)21 where the constant 0.59 . . . is a
function of the particular core shape.

The inner solution is attracting within a class of initi
conditions with bilateral and permutation symmetries. Cr
cal points within the collapsing structure suggest that fl
particles may be trapped there and singular focusing res
The sufficient condition for singularity of Ng and Bhatt
charjee@21# has a particularly simple form in this model. It
conjectured that the topology change at the critical time
lows a subsequent self-similar expanding solution with
change in the linkage of the vortex lines. It also suggests
the singularity is pointwise in time.

The (tcrit2t)21 scaling of the vorticity and strain rat
agrees with the theorems by Beale, Kato, and Majda@20# and
Ponce@19#. The power of the length scale,12, obeys the semi-
norm estimate of25 or larger when velocity is not bounde
~Constantin@25#!. The theorem by Constantin and Fefferm
@26# concerning the spatial correlation of the vorticity un
vector is not violated. Indeed, there are always orthogo
vortex lines in anO(1) neighborhood of the rescaled fram
and there is nonzero curvature of the vortex lines.

Is there an Euler solution similar to that of the filame
model? The extent to which core deformation occurs in
field solution and effects the subsequent dynamics is crit
-

tt.
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ts.
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for determining the answer. It is encouraging that the we
known necessary conditions for consistency of filament
lutions ~large radius of curvature to core size, no core ov
lap! are satisfied. The visual similarity between isosurfac
of the field simulation in Fig. 1 and filament position in Fi
5 is also supportive. To investigate whether there is a rat
strain present near the filaments which would cause se
deformation of material lines and hence vorticity contours
Fig. 15 we plot a few streamlines at a late time in the r
caled frame in the planez50. The streamlines are elliptica
reflecting the elliptical core distribution, but show little oth
deformation. Despite the divergence of the source flow be
3a, the axial strain rate about the filaments creates a reg
with approximately closed streamlines.

In summary, only a field simulation which displays a su
stantial scaling range and adequate resolution can deter
whether there is a self-similar FTS to the incompressi
Euler equations. The model solution in this paper provide
possible structure to the inner and outer solutions, sca
law predictions, and tools such as dynamic rescaling to ca
out such simulations.
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